# Melting Third Pole: Driving Factors and the Consequences

#### PROF. SHAKIL ROMSHOO DEPARTMENT OF EARTH SCIENCES, KU



- <u>INDICATORS</u> of CC are loud and clear in the UIB
- Implications of depleting cryosphere under changing climate on water, energy and food security are far-reaching in the IHR having Geopolitical consequences
- We have lost ~ 20% of the <u>GLACIAL MASS</u> during last 6 decades in the Kashmir Himalayas
- <u>SHIFTING</u> hydrograph peaks, change in the <u>FORM</u> of precipitation and LOW <u>STORAGE CAPACITY</u> are a CONCERN.
- Water issues, if, not understood in the right perspective have potential to <u>COMPLICATE THE SOUTH</u> <u>ASIAN SECURITY</u>

## **SCIENTIFIC CHALLENGES**

- How much water is stored in the Indus cryosphere?
- How Heterogeneous is IH Cryosphere?
- Have we reached the tipping point of max glacier melt in the IHR?
- Significant <u>DECLINE IN THE STREAMFLOWS</u> since 1990s due to the depletion of cryosphere under Changing Climate
- How Important are Glaciers for streamflow in IHR?
- Is BC a Significant Factor in the IHR vis-à-vis CC?

## HIMALAYAN CRYOSPHERE

| Basin       | Glacier area<br>(sq. km) (1) | Mass (Gt)<br>(2) | Mass (Gt)<br>(3) |  |
|-------------|------------------------------|------------------|------------------|--|
| Alaknanda   | 1,036                        | 144              | 110              |  |
| Beas        | 379                          | 53               | 40               |  |
| Bhagirathi  | 883                          | 177              | 143              |  |
| Brahmaputra | 224                          | 21               | 15               |  |
| Chenab      | 2,567                        | 375              | 290              |  |
| Indus       | 8,081                        | 1,562            | 1,273            |  |
| Jhelum      | 158                          | 11               | 8                |  |
| Ravi        | 105                          | 11               | 7                |  |
| Satluj      | 296                          | 28               | 20               |  |
| Sharda      | 772                          | 94               | 71               |  |
| Shyok       | 5,651                        | 1,469            | 1,251            |  |
| Siang       | 57                           | 6                | 5                |  |
| Tista       | 431                          | 59               | 45               |  |
| Yamuna      | 136                          | 18               | 13               |  |
| Shaksgam    | 2,198                        | 422              | 338              |  |
| Sulmar      | 340                          | 30               | 22               |  |
| Total       | 23,314                       | 4,480            | 3,651            |  |

## **INDUS BASIN GLCIERS STUDIED IN THE PAST**



#### Total number of glacier in the basin-18495 (ICIMOD inventory)

#### **VOLUMER ESTIMATION APPROACHES**

#### LUMPED APPROACH (SCALING MODELS)

 $V = c A^{\gamma}$ ,  $\mathbf{V}$  = volume of glacier  $\mathbf{A}$  = area of the glacier

| Source                     | Paramete | r Formulae                             |
|----------------------------|----------|----------------------------------------|
| Chen and Ohmura,1990       | area     | $V = 0.191 \times A^{1.375}$           |
| Bahr, 1997                 | area     | $V = 0.03 \times A^{1.36}$             |
| Bahr et al, 1997           | area     | $V = 0.2055 \times A^{1.36}$           |
| Arendt et al., 2006        | area     | $V = 0.28 \times A^{1.375}$            |
| Haeberli and Hoelzle, 1995 | Slope    | $h = \frac{\tau}{f\rho g \sin \alpha}$ |
| LIGG et al.,               | area     | $H = -11.32 + 0.8433 x A^{1.3}$        |

# **VOLUMER ESTIMES**

|                     | Area<br>(km <sup>2</sup> ) | Volume (km <sup>3</sup> )<br>based on (81), | Volume (km <sup>3</sup> ) based on scaling parameters by |      |      | Mean<br>elevation |
|---------------------|----------------------------|---------------------------------------------|----------------------------------------------------------|------|------|-------------------|
|                     |                            | adjusted                                    | (86)                                                     | (85) | (87) | (m a.s.l.)        |
| Karakoram           | 17,946                     | 1259                                        | 2235                                                     | 2745 | 4024 | 5326              |
| Western<br>Himalaya | 8943                       | 415                                         | 515                                                      | 610  | 895  | 5155              |
| Central<br>Himalaya | 9940                       | 484                                         | 647                                                      | 770  | 1128 | 5600              |
| Eastern<br>Himalaya | 3946                       | 172                                         | 235                                                      | 279  | 408  | 5395              |
| Himalaya<br>total   | 22,829                     | 1071                                        | 1397                                                     | 1659 | 2431 | 5390              |
| Total               | 40,775                     | 2330                                        | 3632                                                     | 4403 | 6455 | 5362              |

Bolch et al., 2012, State and Fate of Himalayan Glaciers, Science

# **RS BASED GLACIER INVENTORIES**



KU (OWN)

ICIMOD



# **Remote Sensing of Glaciers**

| Mountain   | GH                                     | S       | B          |        | ZH      | LH         |       | KK       |  |
|------------|----------------------------------------|---------|------------|--------|---------|------------|-------|----------|--|
| Range      | Changes in area, ELA, volume and snout |         |            |        |         |            |       |          |  |
| Temp. (°C) | -5.49                                  | -6.10   |            | -11.92 |         | -11.55     |       | -15.56   |  |
| Area (%)   | -8.05                                  | -6.32 - |            | -5     | -5.42   |            | 5     | 1.6%     |  |
| ELA (m)    | -45                                    | -3      | 2          | -      | 63      | -22        | 2     | -18      |  |
| Volume(%)  | -11.5                                  | -8      | 3.5 -7.37  |        | 7.65    |            | -0.99 |          |  |
| Snout (m)  | 176                                    | 257 2   |            | 26     | 6 162   |            | 136   |          |  |
| Elevation  |                                        |         |            |        |         |            |       |          |  |
| (m)        | Area (%)                               | Sno     | out(       | m)     | ELA     | (m)        | \     | /ol. (%) |  |
| <4500      | -8.25                                  | 182.86  |            | 6      | -43.79  |            |       | -11.30   |  |
| 4500-5000  | -4.70                                  | 170.00  |            | 0      | -89.50  |            | -6.39 |          |  |
| 5000-5500  | -4.07                                  | 265.21  |            | 1      | -37.22  |            | -5.51 |          |  |
| 5500-6000  | -4.00                                  | 140.07  |            | 7      | 7 -22.5 |            |       | -5.42    |  |
| >6000      | -2.72                                  | 112.67  |            | 7      | -4.33   |            |       | -1.77    |  |
| Mountain   | Min.                                   |         | Max.       |        | Av      | Avg.       |       |          |  |
| ranges     | Thickness                              |         | Thickness  |        | Thi     | Thickness  |       |          |  |
|            | change (m)                             |         | change (m) |        | cha     | change (m) |       |          |  |
| ZH         | -0.13                                  |         | -8.06      |        |         | -2.81      |       |          |  |
| LH         | -1.52                                  |         | -3.14      |        |         | -2.33      |       |          |  |
| КН         | 2.61                                   |         | -4.38      |        |         | -0.57      |       |          |  |
| SB         | -3.36                                  |         |            | -6.35  |         |            | -5.44 |          |  |
| GH         | -2.7                                   |         |            | -3.4   |         |            | -3.05 |          |  |



#### **BENCHMARK GLACIERS FOR DETAILED FIELD STUDIES**







#### Hoksar glacier









<sup>1961 1971 1981 1991 2001 2011 2021 2031 2041 2051 2061 2071 2081 2091</sup> 

20

-10

Department of Earth Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India

#### **Range-wise Ice Thickness Estimates from ICESAT (2002-08)**



Linkages Climate Change, Shrinking Cryosphere & streamflows



## **STREAMFLOW PARTITIONING**



## **Contribution of Snow and Ice**

| Western River Stations                               | Approximate<br>Contribution of<br>Snow and Ice | Period | Annual<br>Inflows<br>(MAF) | Ice and<br>Snow<br>Contrib.<br>(MAF) |  |  |
|------------------------------------------------------|------------------------------------------------|--------|----------------------------|--------------------------------------|--|--|
|                                                      |                                                | 1961-  |                            |                                      |  |  |
| Indus at Tarbela                                     | 85%                                            | 2013   | 60.72                      | 51.6                                 |  |  |
|                                                      |                                                | 1961-  |                            |                                      |  |  |
| Kabul at Nowshera                                    | 75%                                            | 2013   | 21.65                      | 16.2                                 |  |  |
|                                                      |                                                | 1961-  |                            |                                      |  |  |
| Jhelum at Mangla                                     | 65%                                            | 2013   | 22.20                      | 14.4                                 |  |  |
|                                                      |                                                | 1961-  |                            |                                      |  |  |
| Chenab at Marala                                     | 50%                                            | 2013   | 25.36                      | 12.7                                 |  |  |
| Western Rivers Average Inflows                       | 129.93 MAF                                     |        |                            |                                      |  |  |
| Total Western Rivers Snow and Ice Contribution       | 95.0 MAF                                       |        |                            |                                      |  |  |
| Total Contribution of Snow and Ice in Western Rivers | <b>73.1 %</b>                                  |        |                            |                                      |  |  |

#### STREAMFLOW PEAK SHIFTS: SUMMER TO SPRING (OBSERVATIONS)



# **Modelling streamflows under Changing Climate**

![](_page_18_Figure_1.jpeg)

# **BC STUDIES IN KASHMIR HIMALAYA**

![](_page_19_Figure_1.jpeg)

![](_page_20_Picture_0.jpeg)

![](_page_20_Picture_1.jpeg)

# **GEOPOLITICAL CONSEQUENCES**

- INDUS WATER TREATY IS CC BLIND
- DEPLETION OF STREAMFLOWS
- CHANGE OF HYDROGRAPH
- VOICES FOR GW TREATY
- SECURITIZATION OF WATER SHARING
- RELIGIOUS & NATIONALIST POSTURES
- NEED FOR WATER STORAGE/FLOOD
  INFRASTRUCTURE
- DATA SHARING/TELEMETRY/JOINT
  STUDIES TO BE ENCOURAGED
- BC VS CC DEBATE

# Indus River Basin

Common Concerns and the Roadmap to Resolution

Shakil A Romshoo

![](_page_21_Picture_13.jpeg)

![](_page_22_Picture_0.jpeg)