# The Past and Future Mass Balance of Himalayan Glaciers



# Krishna AchutaRao

## Centre for Atmospheric Sciences India Institute of Technology Delhi New Delhi

Science and Geopolitics of Himalaya, Arctic & Antarctic SaGHAA VI 2017

# Objectives

 Modelling Mass Balance of glaciers to understand the drivers of past changes and hydrological implications.

# Objectives

- Modelling Mass Balance of glaciers to understand the drivers of past changes and hydrological implications.
- Model future changes to glacier mass balance in the Himalayas.

# **Location of Chosen Glaciers**



## Observed Annual Specific Mass Balance – Himalayan Glaciers



# Datasets

- Meteorological Data
  - ECMWF Reanalysis (2.5°x2.5° resolution) for
    - Monthly mean Temperature
    - Fixed fields: Orography
  - GPCC data for precipitation (2.5°x2.5°)
    - Monthly Precipitation
  - Coupled Model Intercomparison Project (CMIP5)
    - Monthly Datasets Temperature, Precipitation
    - Fixed fields: Orography
    - Models: CCSM4, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, FGOALS-g2, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-CC, HadGEM2-ES, MPI-ESM-LR, MPI-ESM-MR





Mass Balance Model
$$b = c - a + R$$
Specific Mass  
BalanceAccumulationAblationRefreezingAccumulation: $c = \delta_m P_m$  $\begin{cases} \delta_m = 1, T_m < T_{snow} \\ \delta_m = 0, T_m \geq T_{snow} \end{cases}$ where $T_m$ Honthly Precipitation $T_m$  $T_m$ 

Mass Balance Model
$$b = c - a + R$$
Specific Mass  
BalanceAccumulationAblationRefreezingAccumulation:  $c = \delta_m P_m$  $\begin{cases} \delta_m = 1, T_m < T_{snow} \\ \delta_m = 0, T_m \ge T_{snow} \end{cases}$ where  
 $T_m$  $r_m$ Ablation: $a = f_{snow/ice}T_m^+n$ where  
 $T_m^+$  $r_m^+$  $r_m^+$ <

Mass Balance Model  

$$b = c - a + R$$
Specific Mass  
Balance  
Accumulation Ablation Refreezing  
Accumulation:  $C = \delta_m P_m \begin{cases} \delta_m = 1, T_m < T_{snow} & \text{where } P_m = \text{Monthly Precipitation} \\ T_m = \text{Monthly Temperature} \\ T_{snow} = \text{Snow Higher Precipitation} \\ T_m = \text{Monthly Temperature} \\ T_{snow} = \text{Snow Temperature} \\ T_{snow} = \text{Snow Temperature} \\ \text{Ablation:} \qquad a = f_{snow/ice} T_m^+ n \qquad \text{where } f_{snow/ice} \Rightarrow \text{Degree day factor of snow/ice} \\ \text{Refreezing:} \quad R = -0.69T_a + 0.0096 \quad T_a \Rightarrow \text{Annual Mean Temperature} \\ \text{Area Averaged Specific Mass Balance} \\ B = \sum_{i=0}^n b_i S_i \\ B = \sum_{i=0}^n S_i \qquad \text{where, } S = \text{Surface area of glacier} \\ n = \text{number of elevation bands} \end{cases}$ 

## Mass Balance Model

**Calculating Temperature at Glacier site (from Reanalysis):** 

$$T = T_{ERA} + lr_{ERA} \left( h_{\max} - h_{ERA} \right) + lr \left( h - h_{\max} \right)$$

Where,  $T_{ERA}$  = Temperature from ERA-40 from the observed period  $lr_{ERA}$  = Statistical Lapse Rate lr = Lapse rate along the glacier surface  $h_{max}$  = Highest altitude of the glacier  $h_{ERA}$  = Altitude of the ERA grid cell containing the glacier h = Average altitude of the elevation band

### **Calculation of Precipitation at Glacier site (from Reanalysis):**

$$P = k_p \times P_{ERA} [1 + d_{prec} (h - h_{max})]$$

Where,  $k_p$  = Precipitation coefficient  $P_{ERA}$  = Monthly precipitation in GPCC

 $d_{prec}$  = Precipitation gradient

# Mass Balance Model

**Calculating Temperature at Glacier site (from Reanalysis):** 

$$T = T_{ERA} + lr_{ERA} \left( h_{\max} - h_{ERA} \right) + lr \left( h - h_{\max} \right)$$

Where,  $T_{ERA}$  = Temperature from ERA-40 from the observed period  $lr_{ERA}$  = Statistical Lapse Rate lr = Lapse rate along the glacier surface  $h_{max}$  = Highest altitude of the glacier  $h_{ERA}$  = Altitude of the ERA grid cell containing the glacier h = Average altitude of the elevation band lr

 $f_{snow}$ 

 $f_{ice}$ 

 $k_p$ 

**T**<sub>snow</sub>

### **Calculation of Precipitation at Glacier site (from Reanalysis):**

$$P = k_p \times P_{ERA}[1 + d_{prec}(h - h_{max})]$$

Where,  $k_p$  = Precipitation coefficient  $P_{ERA}$  = Monthly precipitation in GPCC  $d_{prec}$  = Precipitation gradient

## Observed and Modelled Annual Specific Mass Balance Himalayan Glaciers







- Negative bias in temperature favours accumulation and refreezing resulting in a positive bias.
- Higher positive temperature bias results in high negative bias of the

MB bias CMIP5 pr/ERA tas



-10

0

-10

0 -10

ં

(m.w 20

Annual Mass Balance Bias

-10

-10

-10

-100

-10

-25 -50

-20 -40

-10

-10



ં

(m.w

Annual Mass Balance Bias

#### **S** Temperature:

- Negative bias in temperature favours accumulation and refreezing resulting in a positive bias.
- Higher positive temperature bias results in high negative bias of the mass balance.

### **Precipitation:**

Higher negative bias results in high negative bias of the mass balance. Positive bias in precipitation results in a positive bias.





(ə.

(m.w

Annual Mass Balance Bias

#### **S** Temperature:

- Negative bias in temperature favours accumulation and refreezing resulting in a positive bias.
- Higher positive temperature bias results in high negative bias of the mass balance.

### **Precipitation:**

Higher negative bias results in high negative bias of the mass balance. Positive bias in precipitation results

in a positive bias.





### S Temperature:

- Negative bias in temperature favours accumulation and refreezing resulting in a positive bias.
- Higher positive temperature bias results in high negative bias of the mass balance.

## Precipitation:

- Higher negative bias results in high negative bias of the mass balance.
- Positive bias in precipitation results in a positive bias.
  - Larger bias due climate variables of many models for particular glacier.
  - Few models with large bias for many glaciers.



## Modelled Historical and RCP4.5 Projections

Modelled Annual Specific Mass Balance - Chotta Shigri

(Bias removed CMIP5 Historical and RCP45)



## Modelled Historical and RCP8.5 Projections

Modelled Annual Specific Mass Balance - Chotta Shigri

(Bias removed CMIP5 Historical and RCP85)



# Conclusion

- Very few glaciers with long record of mass balance observations are available for the Himalayas
- Glaciers with longer record of mass balance observations are better for modeling
- Model errors in precipitation are larger than temperature errors affecting mass balance calculations
- The RCP8.5 scenario shows a comparatively larger loss of ice mass at the end of century than RCP4.5



indseelan@gmail.com

## **McCarty Glacier - Alaska**





## Data Survey

 Individual glacier details such as Location, elevation, surface area, Mass Balance time series, changes are sourced from Glacier Atlas of India, INSTAAR Occasional paper no 55 and journal publications.

|       |                                                                                        | hmin | hmax | hmean  | area   | starting | ending | Tot.  |                        |        |
|-------|----------------------------------------------------------------------------------------|------|------|--------|--------|----------|--------|-------|------------------------|--------|
| S. No | Glacier                                                                                | (m)  | (m)  | (m)    | (sqkm) | year     | year   | Years | Source                 | Region |
| А     | Siachen                                                                                | 2800 | 7600 | 5200   | 647.3  | 1987     | 1991   | 5     | Bhutiyani 1999         | КА     |
| В     | Shishram                                                                               | 3740 | 4900 | 4320   | 9.9    | 1984     | 1984   | 1     | INSTAAR/OP-55          | WH     |
| С     | Kolahoi                                                                                | 3690 | 5000 | 4345   | 11.9   | 1984     | 1984   | 1     | INSTAAR/OP-55          | WH     |
| D     | Neh Nar                                                                                | 3920 | 4925 | 4422.5 | 1.7    | 1980     | 1984   | 5     | INSTAAR/OP-55          | WH     |
| E     | Rulung                                                                                 | 5660 | 6090 | 5880   | 0.947  | 1980     | 1981   | 2     | Srivastava et al 1999b | WH     |
| F     | Hamtah                                                                                 | 4000 | 5000 | 4500   | 3.3    | 2001     | 2012   | 11    | S.S.Dutta et al 2009   | WH     |
| G     | Chotta Shigri                                                                          | 4050 | 6263 | 5156.5 | 8.75   | 1988     | 2011   | 11    | Glacier Atlasof India  | WH     |
| Н     | Gara                                                                                   | 4700 | 5600 | 5150   | 2.02   | 1975     | 1983   | 9     | Glacier Atlasof India  | WH     |
| I     | Gor Garang                                                                             | 4750 | 5400 | 5075   | 5.76   | 1977     | 1985   | 9     | INSTAAR/OP-55          | WH     |
| J     | Tipra Bank                                                                             | 3070 | 5730 | 4400   | 7      | 1986     | 1988   | 3     | INSTAAR/OP-55          | WH     |
| К     | Shaune Garang                                                                          | 3840 | 5360 | 4600   | 4.94   | 1982     | 1990   | 9     | INSTAAR/OP-55          | СН     |
| L     | Naradu                                                                                 | 4395 | 5400 | 4920   | 4.56   | 2001     | 2003   | 3     | Koul & Ganjoo 2010     | СН     |
| М     | Dokirani                                                                               | 3890 | 5990 | 4940   | 8.75   | 1993     | 2000   | 6     | Glacier Atlasof India  | СН     |
| Ν     | Chorabari                                                                              | 3850 | 6420 | 5070   | 6.66   | 2004     | 2010   | 7     | Dobhal et al 2013      | СН     |
| 0     | Dunagiri                                                                               | 3970 | 5150 | 4560   | 2.56   | 1986     | 1990   | 5     | INSTAAR/OP-55          | СН     |
| Р     | Rikha Samba                                                                            | 5392 | 6476 | 5800   | 5.37   | 2013     | 2013   | 1     | Sanjaya et al 2016     | СН     |
| Q     | Yala                                                                                   | 5094 | 5749 | 5250   | 2.5    | 2012     | 2012   | 1     | Sanjaya et al 2016     | СН     |
| R     | Pokalde                                                                                | 5430 | 5690 | 5625   | 0.1    | 2010     | 2012   | 3     | P.Wagnon et al 2013    | СН     |
| S     | Mera                                                                                   | 4940 | 6420 | 5615   | 5.1    | 2008     | 2012   | 5     | P.Wagnon et al 2013    | СН     |
| Т     | ChangmeKhangpu                                                                         | 5080 | 5520 | 5300   | 4.5    | 1981     | 1986   | 6     | INSTAAR/OP-55          | EH     |
| U     | Gangju La                                                                              | 4900 | 5200 | 5050   | 0.29   | 2012     | 2014   | 3     | Phantsho et al 2016    | EH     |
|       | KA - Karakoram, WH - Western Himalayas, CH - Central Himalayas, EH - Eastern Himalayas |      |      |        |        |          |        |       |                        |        |



# Modelling Hypsometry

Not all the glaciers have observed hypsometry Triangle Method : mountain glaciers (Raper and Braithwaite 2006) Parabola Method : ice caps, ice sheets



# Mass Balance Model Parameters

| Parameter         | Parameter name            | Parameter range |  |  |
|-------------------|---------------------------|-----------------|--|--|
| lr <sub>ERA</sub> | Statistical lapse rate    | -0.01 to 0.002  |  |  |
| lr                | Normal lapse rate         | -0.01 to 0.002  |  |  |
| $f_{snow}$        | Degree day of snow        | 2 to 8          |  |  |
| $f_{ice}$         | Degree day of ice         | 4 to 12         |  |  |
| $k_p$             | Precipitation coefficient | 0.1 to 20       |  |  |
| $d_{prec}$        | Precipitation gradient    | 0.0 to 0.9      |  |  |
| T <sub>snow</sub> | Temperature of snow       | 0.0 to 2.0      |  |  |

## Area Averaged Monthly contribution of Mass Balances

DOKIRANI



#### Difference in Orography (ERA40 - ERA Interim) Restricted to grids with glaciers



## Selection of CMIP5 models

We have to examine carefully three statistical properties viz Correlation, Root Mean Square Error (RMSE) and Standard Deviation (SD).

If the Correlation is high and RMSE is low, we can say the model is good as the SD is a trigonometric function of those two.



#### Winter Climatology of Precipitation (1971-2000) - Karakoram



Winter Climatology of Precipitation (1971-2000) - Western Himalayas



Winter Climatology of Precipitation (1971-2000) - Central Himalayas

Winter Climatology of Precipitation (1971-2000) - Eastern Himalayas



Region wise seasonal climatology of precipitation of all models with reference to reanalysis dataset (CMIP5 vs GPCC)



Climatological Annual Cycle of Precipitation (1971-2000)



Climatological Annual Cycle of Temperature (1971-2000)







Summer Climatology of Temperature (1971-2000) - Central Himalayas

Summer Climatology of Temperature (1971-2000) - Eastern Himalayas







Region wise seasonal climatology of temperature of all models with reference to reanalysis dataset (CMIP5 vs ERA40)





## Modelled CMIP5 Historical Mass Balance

**CHHOTA SHIGRI** 



# Modelled CMIP5 Historical Mass Balance

SIACHEN



## Modelled CMIP5 Historical and Future Projections

Modelled Annual Specific Mass Balance - Siachen

(Bias removed CMIP5 Historical and RCP45)



#### Modelled Annual Specific Mass Balance - Siachen

(Bias removed CMIP5 Historical and RCP85)



#### Modelled Annual Specific Mass Balance - Siachen

(Raw CMIP5 Historical and RCP45 with 5-95 percentile significance)



#### Modelled Annual Specific Mass Balance - Siachen

(Raw CMIP5 Historical and RCP85 with 5-95 percentile significance)

